Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1304734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585707

RESUMO

Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.

2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37790530

RESUMO

Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation. Significance Statement: Plants recognize pathogens as non-self using innate immune receptors. Receptors on the cell surface can recognize amino acid epitopes present in pathogen proteins. Despite many papers investigating receptor signaling, the vast majority use a single epitope. Here, we analyzed the natural variation across five different epitopes and experimentally characterized their perception in plants. We highlight the importance of analyzing all epitope copies within a pathogen genome. Through genetic and biochemical analyses, we revealed a mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic epitope blocks perception of immunogenic forms encoded in a single genome. These data can directly inform disease control strategies by enabling prediction of receptor utility and deployment for current and emerging pathogens.

3.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930748

RESUMO

Mobile genetic elements can innovate bacteria with new traits. In plant pathogenic Streptomyces, frequent and recent acquisition of integrative and conjugative or mobilizable genetic elements is predicted to lead to the emergence of new lineages that gained the capacity to synthesize Thaxtomin, a phytotoxin neccesary for induction of common scab disease on tuber and root crops. Here, we identified components of the Streptomyces-potato pathosystem implicated in virulence and investigated them as a nested and interacting system to reevaluate evolutionary models. We sequenced and analysed genomes of 166 strains isolated from over six decades of sampling primarily from field-grown potatoes. Virulence genes were associated to multiple subtypes of genetic elements differing in mechanisms of transmission and evolutionary histories. Evidence is consistent with few ancient acquisition events followed by recurrent loss or swaps of elements carrying Thaxtomin A-associated genes. Subtypes of another genetic element implicated in virulence are more distributed across Streptomyces. However, neither the subtype classification of genetic elements containing virulence genes nor taxonomic identity was predictive of pathogenicity on potato. Last, findings suggested that phytopathogenic strains are generally endemic to potato fields and some lineages were established by historical spread and further dispersed by few recent transmission events. Results from a hierarchical and system-wide characterization refine our understanding by revealing multiple mechanisms that gene and bacterial dispersion have had on shaping the evolution of a Gram-positive pathogen in agricultural settings.


Assuntos
Produtos Agrícolas , Streptomyces , Virulência/genética , Fenótipo , Streptomyces/genética , Sequências Repetitivas Dispersas
5.
Annu Rev Microbiol ; 77: 603-624, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437216

RESUMO

Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Fenótipo , Sequências Repetitivas Dispersas
6.
Curr Biol ; 33(14): 2988-3001.e4, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37490853

RESUMO

The capacity of beneficial microbes to compete for host infection-and the ability of hosts to discriminate among them-introduces evolutionary conflict that is predicted to destabilize mutualism. We investigated fitness outcomes in associations between legumes and their symbiotic rhizobia to characterize fitness impacts of microbial competition. Diverse Bradyrhizobium strains varying in their capacity to fix nitrogen symbiotically with a common host plant, Acmispon strigosus, were tested in full-factorial coinoculation experiments involving 28 pairwise strain combinations. We analyzed the effects of interstrain competition and host discrimination on symbiotic-interaction outcomes by relativizing fitness proxies to clonally infected and uninfected controls. More than one thousand root nodules of coinoculated plants were genotyped to quantify strain occupancy, and the Bradyrhizobium strain genome sequences were analyzed to uncover the genetic bases of interstrain competition outcomes. Strikingly, interstrain competition favored a fast-growing, minimally beneficial rhizobia strain. Host benefits were significantly diminished in coinoculation treatments relative to expectations from clonally inoculated controls, consistent with competitive interference among rhizobia that reduced both nodulation and plant growth. Competition traits appear polygenic, linked with inter-strain allelopathic interactions in the rhizosphere. This study confirms that competition among strains can destabilize mutualism by favoring microbes that are superior in colonizing host tissues but provide minimal benefits to host plants. Moreover, our findings help resolve the paradox that despite efficient host control post infection, legumes nonetheless encounter rhizobia that vary in their nitrogen fixation.


Assuntos
Bradyrhizobium , Fabaceae , Lotus , Rhizobium , Fixação de Nitrogênio , Genótipo , Bradyrhizobium/genética , Simbiose/genética , Nódulos Radiculares de Plantas
7.
mSystems ; 8(4): e0033323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37477440

RESUMO

Agrobacteria are a diverse, polyphyletic group of prokaryotes with multipartite genomes capable of transferring DNA into the genomes of host plants, making them an essential tool in plant biotechnology. Despite their utility in plant transformation, genome-wide transcriptional regulation is not well understood across the three main lineages of agrobacteria. Transcription start sites (TSSs) are a necessary component of gene expression and regulation. In this study, we used differential RNA-seq and a TSS identification algorithm optimized on manually annotated TSS, then validated with existing TSS to identify thousands of TSS with nucleotide resolution for representatives of each lineage. We extend upon the 356 TSSs previously reported in Agrobacterium fabrum C58 by identifying 1,916 TSSs. In addition, we completed genomes and phenotyping of Rhizobium rhizogenes C16/80 and Allorhizobium vitis T60/94, identifying 2,650 and 2,432 TSSs, respectively. Parameter optimization was crucial for an accurate, high-resolution view of genome and transcriptional dynamics, highlighting the importance of algorithm optimization in genome-wide TSS identification and genomics at large. The optimized algorithm reduced the number of TSSs identified internal and antisense to the coding sequence on average by 90.5% and 91.9%, respectively. Comparison of TSS conservation between orthologs of the three lineages revealed differences in cell cycle regulation of ctrA as well as divergence of transcriptional regulation of chemotaxis-related genes when grown in conditions that simulate the plant environment. These results provide a framework to elucidate the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. IMPORTANCE Transcription start sites (TSSs) are fundamental for understanding gene expression and regulation. Agrobacteria, a group of prokaryotes with the ability to transfer DNA into the genomes of host plants, are widely used in plant biotechnology. However, the genome-wide transcriptional regulation of agrobacteria is not well understood, especially in less-studied lineages. Differential RNA-seq and an optimized algorithm enabled identification of thousands of TSSs with nucleotide resolution for representatives of each lineage. The results of this study provide a framework for elucidating the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. The optimized algorithm also highlights the importance of parameter optimization in genome-wide TSS identification and genomics at large.


Assuntos
Genômica , Transcriptoma , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Nucleotídeos
8.
Annu Rev Phytopathol ; 61: 1-23, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164023

RESUMO

Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.


Assuntos
Agrobacterium , Evolução Biológica , Virulência , Ecologia , Genômica
9.
Arch Microbiol ; 205(6): 244, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209150

RESUMO

Streptomyces sp. RS2 was isolated from an unidentified sponge collected around Randayan Island, Indonesia. The genome of Streptomyces sp. RS2 consists of a linear chromosome of 9,391,717 base pairs with 71.9% of G + C content, 8270 protein-coding genes, as well as 18 rRNA and 85 tRNA loci. Twenty-eight putative secondary metabolites biosynthetic gene clusters (BGCs) were identified in the genome sequence. Nine of them have 100% similarity to BGCs for albaflavenone, α-lipomycin, coelibactin, coelichelin, ectoine, geosmin, germicidin, hopene, and lanthionine (SapB). The remaining 19 BGCs have low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. Biological activity assays of extracts from 21 different cultures of the RS2 strain showed that SCB ASW was the best medium for the production of antimicrobial and cytotoxic compounds. Streptomyces sp. RS2 has great potential to be a producer of novel secondary metabolites, particularly those with antimicrobial and antitumor activities.


Assuntos
Anti-Infecciosos , Antineoplásicos , Streptomyces , Genoma Bacteriano , Anti-Infecciosos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Metabolismo Secundário/genética , Família Multigênica
10.
Phytopathology ; 113(6): 975-984, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36515656

RESUMO

Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.


Assuntos
Doenças das Plantas , Xanthomonas , Melhoramento Vegetal , Xanthomonas/fisiologia , Sequenciamento Completo do Genoma , Surtos de Doenças , Plantas/genética , Genoma Bacteriano/genética
11.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35639596

RESUMO

Acquisition of mobile genetic elements can confer novel traits to bacteria. Some integrative and conjugative elements confer upon members of Bradyrhizobium the capacity to fix nitrogen in symbiosis with legumes. These so-called symbiosis integrative conjugative elements (symICEs) can be extremely large and vary as monopartite and polypartite configurations within chromosomes of related strains. These features are predicted to impose fitness costs and have defied explanation. Here, we show that chromosome architecture is largely conserved despite diversity in genome composition, variations in locations of attachment sites recognized by integrases of symICEs, and differences in large-scale chromosomal changes that occur upon integration. Conversely, many simulated nonnative chromosome-symICE combinations are predicted to result in lethal deletions or disruptions to architecture. Findings suggest that there is compatibility between chromosomes and symICEs. We hypothesize that the size and structural flexibility of symICEs are important for generating combinations that maintain chromosome architecture across a genus of nitrogen-fixing bacteria with diverse and dynamic genomes.


Assuntos
Conjugação Genética , Simbiose , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Genoma Bacteriano , Simbiose/genética
12.
mBio ; 13(3): e0007422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35416699

RESUMO

Root nodulating rhizobia are nearly ubiquitous in soils and provide the critical service of nitrogen fixation to thousands of legume species, including staple crops. However, the magnitude of fixed nitrogen provided to hosts varies markedly among rhizobia strains, despite host legumes having mechanisms to selectively reward beneficial strains and to punish ones that do not fix sufficient nitrogen. Variation in the services of microbial mutualists is considered paradoxical given host mechanisms to select beneficial genotypes. Moreover, the recurrent evolution of non-fixing symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. Here, we deconstructed hundreds of genome sequences from genotypically and phenotypically diverse Bradyrhizobium strains and revealed mechanisms that generate variation in symbiotic nitrogen fixation. We show that this trait is conferred by a modular system consisting of many extremely large integrative conjugative elements and few conjugative plasmids. Their transmissibility and propensity to reshuffle genes generate new combinations that lead to uncooperative genotypes and make individual partnerships unstable. We also demonstrate that these same properties extend beneficial associations to diverse host species and transfer symbiotic capacity among diverse strains. Hence, symbiotic nitrogen fixation is underpinned by modularity, which engenders flexibility, a feature that reconciles evolutionary robustness and instability. These results provide new insights into mechanisms driving the evolution of mobile genetic elements. Moreover, they yield a new predictive model on the evolution of rhizobial symbioses, one that informs on the health of organisms and ecosystems that are hosts to symbionts and that helps resolve the long-standing paradox. IMPORTANCE Genetic variation is fundamental to evolution yet is paradoxical in symbiosis. Symbionts exhibit extensive variation in the magnitude of services they provide despite hosts having mechanisms to select and increase the abundance of beneficial genotypes. Additionally, evolution of uncooperative symbiont genotypes is predicted to destabilize symbiosis, but breakdown has rarely been observed. We analyzed genome sequences of Bradyrhizobium, bacteria that in symbioses with legume hosts, fix nitrogen, a nutrient essential for ecosystems. We show that genes for symbiotic nitrogen fixation are within elements that can move between bacteria and reshuffle gene combinations that change host range and quality of symbiosis services. Consequently, nitrogen fixation is evolutionarily unstable for individual partnerships, but is evolutionarily stable for legume-Bradyrhizobium symbioses in general. We developed a holistic model of symbiosis evolution that reconciles robustness and instability of symbiosis and informs on applications of rhizobia in agricultural settings.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Ecossistema , Fabaceae/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Rhizobium/genética , Rhizobium/metabolismo , Simbiose/genética
13.
Mol Microbiol ; 117(5): 1023-1047, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35191101

RESUMO

Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.


Assuntos
Agrobacterium tumefaciens , Vias Biossintéticas , Adesivos/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Polissacarídeos Bacterianos/metabolismo
14.
BMC Biol ; 20(1): 16, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022048

RESUMO

BACKGROUND: Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS: We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS: We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Filogenia , Plasmídeos/genética , Virulência
15.
Artigo em Inglês | MEDLINE | ID: mdl-35085064

RESUMO

Fourteen strains of Streptomyces isolated from scab lesions on potato are described as members of a novel species based on genetic distance, morphological observation and biochemical analyses. Morphological and biochemical characteristics of these strains are distinct from other described phytopathogenic species. Strain NE06-02DT has white aerial mycelium and grey, cylindrical, smooth spores on rectus-flexibilis spore chains. Members of this species group can utilize most of the International Streptomyces Project sugars, utilize melibiose and trehalose, produce melanin, grow on 6-7 % NaCl and pH 5-5.5 media, and are susceptible to oleandomycin (100 µg ml-1), streptomycin (20 µg ml-1) and penicillin G (30 µg ml-1). Though the 16S rRNA gene sequences from several members of this novel species are identical to the Streptomyces bottropensis 16S rRNA gene sequence, whole-genome average nucleotide identity and multi-locus sequence analysis confirm that the strains are members of a novel species. Strains belonging to this novel species have been isolated from the United States, Egypt and China with the earliest known members being isolated in 1961 from common scab lesions of potato in both California, USA, and Maine, USA. The name Streptomyces caniscabiei sp. nov. is proposed for strain NE06-02DT (=DSM111602T=ATCC TSD-236T) and the other members of this novel species group.


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Solanum tuberosum , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação
16.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200466, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34839700

RESUMO

Members of the agrobacteria-rhizobia complex (ARC) have multiple and diverse plasmids. The extent to which these plasmids are shared and the consequences of their interactions are not well understood. We extracted over 4000 plasmid sequences from 1251 genome sequences and constructed a network to reveal interactions that have shaped the evolutionary histories of oncogenic virulence plasmids. One newly discovered type of oncogenic plasmid is a mosaic with three incomplete, but complementary and partially redundant virulence loci. Some types of oncogenic plasmids recombined with accessory plasmids or acquired large regions not known to be associated with pathogenicity. We also identified two classes of partial virulence plasmids. One class is potentially capable of transforming plants, but not inciting disease symptoms. Another class is inferred to be incomplete and non-functional but can be found as coresidents of the same strain and together are predicted to confer pathogenicity. The modularity and capacity for some plasmids to be transmitted broadly allow them to diversify, convergently evolve adaptive plasmids and shape the evolution of genomes across much of the ARC. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Assuntos
Bactérias Fixadoras de Nitrogênio , Rhizobium , Bactérias Fixadoras de Nitrogênio/genética , Plasmídeos/genética , Rhizobium/genética , Virulência/genética
17.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681501

RESUMO

Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.

18.
mBio ; 12(5): e0192721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517758

RESUMO

The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.


Assuntos
Agrobacterium/metabolismo , Sistemas de Secreção Tipo VI/classificação , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Ecossistema , Evolução Molecular , Filogenia
19.
Proc Biol Sci ; 288(1951): 20210812, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034525

RESUMO

Legumes preferentially associate with and reward beneficial rhizobia in root nodules, but the processes by which rhizobia evolve to provide benefits to novel hosts remain poorly understood. Using cycles of in planta and in vitro evolution, we experimentally simulated lifestyles where rhizobia repeatedly interact with novel plant genotypes with which they initially provide negligible benefits. Using a full-factorial replicated design, we independently evolved two rhizobia strains in associations with each of two Lotus japonicus genotypes that vary in regulation of nodule formation. We evaluated phenotypic evolution of rhizobia by quantifying fitness, growth effects and histological features on hosts, and molecular evolution via genome resequencing. Rhizobia evolved enhanced host benefits and caused changes in nodule development in one of the four host-symbiont combinations, that appeared to be driven by reduced costs during symbiosis, rather than increased nitrogen fixation. Descendant populations included genetic changes that could alter rhizobial infection or proliferation in host tissues, but lack of evidence for fixation of these mutations weakens the results. Evolution of enhanced rhizobial benefits occurred only in a subset of experiments, suggesting a role for host-symbiont genotype interactions in mediating the evolution of enhanced benefits from symbionts.


Assuntos
Fabaceae , Lotus , Rhizobium , Lotus/genética , Fixação de Nitrogênio , Rhizobium/genética , Nódulos Radiculares de Plantas , Simbiose
20.
Annu Rev Phytopathol ; 59: 311-332, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34030448

RESUMO

Diseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.


Assuntos
Genômica , Doenças das Plantas , Epidemiologia Molecular , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...